• Albin Pump
    臭氧發生器
    Della Foglia
    Wilden 氣動隔膜泵
    美國astro-med數據采集分析系統
    ARCA
    KOSO
    威德高wedeco臭氧發生器紫外線**器
    大湖電伴熱系統
    curtiss wright核電產品
    GreatLakes優勢產品總匯
    severntrentdenora
    GEA板式熱交換器
    美國chemineer攪拌器
    英國mono螺桿泵
    美國moyno螺桿泵
    瑞士maag齒輪泵造粒系統
    美國farris**閥
    flowserve閥門
    pentair閥門

    首頁 >>> 產品目錄 >>> 進口水泵總匯
    產品[Carbon dioxide for pH control]資料
    如果您對該產品感興趣的話,可以
    產品名稱: Carbon dioxide for pH control
    產品型號:
    產品展商: 大湖
    簡單介紹
    Sodium and calcium hypochlorite both tend to raise the pH of swimming pool water. So an acid is required to lower the
    Carbon dioxide for pH control的詳細介紹

    Carbon dioxide for pH control

    A PWTAG Technical note 6
    August 2011

    Sodium and calcium hypochlorite both tend to raise the pH of swimming pool water. So an acid is required to lower the pH value to what is best for effective disinfection – 7.2-7.4.  The bottom of this range is better, bearing in mind that each extra 0.5 in pH value doubles the amount of disinfectant needed. Flocculents also work better at the lower pH values.

    Sodium bisulphate and hydrochloric acid are the chemicals most often used. Carbon dioxide is an alternative well worth considering. It is not suitable for pools where the source water is high in alkalinity (over 150mg/l as CaCO3) or calcium hardness (over 300mg/l as CaCO3)  Nor is it suitable in leisure pools and spas, where water features will drive it out of the water. But for the majority of pools, PWTAG recommends that it should be the preferred choice.

     

    Advantages
    CO2 offers a number of advantages over the mineral acids, sodium bisulphate and hydrochloric acid.

    • CO2 is a colourless, odourless, non-flammable gas. It is easy to handle and dose, and is dangerous only if released in a confined area, when it can  asphyxiate. It requires no special protective equipment.
    • Under COSHH regulations a pool operator must carry out a risk assessment in selecting the chemicals to use in a pool. The first step is to ascertain whether using an alternative process or chemical can eliminate a chemical risk: CO2  scores on this count
    • Deliveries are unlikely to result in emergencies because of spillages, and  where ventilation is good, CO2 does not demand any special safety monitoring for leakage.
    • Unlike mineral acids, it is not possible to mix CO2 with sodium or calcium hypochlorite (in liquid form) through spillage in bunds or operator error when acids are mixed in day or main tanks with hypochlorite. This means no possibility of accidental production of chlorine gas – a significant hazard in swimming pool installations.
    • Due to its natural buffering action, CO2 provides improved process control. pH reduction is more gradual than with mineral acids, making accurate control inherently easier, but sometimes slower. CO2 as a saturated solution has a pH of 5 while hydrochloric acid at 30% w/w has a pH of less than 1. Swimming pool water does not respond well to the sudden impact of chemicals. Some of the reactions taking place in pool water can take many hours, sometimes days, to complete. Gentle, gradual adjustment of chemicals is best practice.
    • There is no secondary pollution introduced into the treated water by salts such as chlorides (from hydrochloric acid) or sulphates (from (sodium bisulphate). The introduction of CO2 will contribute to the chemical equilibrium of water by forming carbonates and bicarbonates – contributing to total dissolved solids levels, but not to corrosion.

     

    Additional benefits of CO2
    A study published in the scientific journal Chemosphere in 2010 suggested some further advantages of using CO2. It found that its use slightly reduces the carbon footprint of a swimming pool, producing less greenhouse gas. It also found that three pools that changed from hydrochloric acid to CO2 had lower chlorine consumption, lower levels of oxidants in the air above the swimming pool and of trihalomethanes in the pool water. Further research is needed to determine if the buffer effect of CO2  is the main factor in this.

     

    Cost
    CO2 is likely to be more expensive in terms of materials. But there are hidden costs to consider. A mineral acid dosing system is likely to require more staff time for the dosing procedures. There is special personal protection clothing required. There are the costs associated with maintenance. So there may be little to choose between the two. In any case, a 25m pool is unlikely to cost much more than £2,000 a year for pH reduction – very little when set against safety and water quality considerations.

     

    Installation
    There are two types of carbon dioxide storage. Cylinders of 6.35 or 35kg capacity can be arranged in banks of two or four. Bulk storage involves a storage vessel normally installed and maintained by the CO2 supplier. Deliveries are made from a tanker vehicle designed solely for the transport of CO2.

    The chemical is in the liquid phase in the storage container and changes to the gas phase when passed through a pressure reduction valve.

    Carbon dioxide gas is denser than air, so in the event of leakage a high concentration could form in the storage area. CO2 cylinders must be stored in a cool area with adequate low-level ventilation to the exterior of the building. If cylinders are stored in an enclosed area (particularly below ground level), with the possibility of high concentrations of CO2 accumulating in the event of a leakage, there must be fixed CO2 detectors or adequate mechanical ventilation. Self-contained breathing apparatus must also be made available for emergency use at the entrance and to the area. The apparatus should be of a minimum 30-min endurance and a regular system of inspection must be maintained. Personnel who might be required to use the apparatus must be trained on a regular and continuing basis.

    Storage in direct sunlight or near steam pipes, radiators or other sources of heat must be avoided. The temperature of a cylinder and its contents may not always correspond to ambient temperatures. There can be considerable increase of temperature and pressure due to radiation from exposure to the sun or other sources.

    The point of injection is best determined in consultation with the CO2 supplier. To prevent scaling, the point of application is usually after the heat exchanger, with diffuser holes facing downstream.

    The rate of application can be controlled automatically so that the pH of the water is maintained at a constant pre-set level

     

    The alternatives
    The use of sodium bisulphate to lower pHb will inevitably raise the sulphate level in the pool water. If it goes above the ideal maximum of 360mg/l, then sulphate-resistant cement materials will be needed. The only remedy for excessive sulphate level is dilution; the recommended guideline of 30l per bather may suffice.

    Hydrochloric acid also poses difficulties in manual handling: ideally it should be used only at low concentrations. Bulk industrial grade can be 30 to 35% and at this level can present handling difficulties and so ideally should be diluted. Typically the concentrate is drawn into a water-operated venturi or injector that discharges into the day tank. Such dilutions are not highly accurate, but it removes the need for manual handling of strong acid. The acid actively fumes, so an open container is a hazard even without spillage. Indeed, whenever fuming acid is held in a day tank or other container, there must be special provision (good seals etc) to prevent the fumes escaping into the atmosphere. Fumes are a threat to the fabric of the building as well as people's health.

    Alternatively, hydrochloric acid can be purchased at 5% v/v strength for use in health suites, hydrotherapy and school pools. There is no fuming and far fewer handling issues. The quantities required for public pools may present a storage problem.

    The use of sulphuric acid – not recommended by PWTAG – is the subject of a separate technical note on pwtag.org.

     

     

    The future
    Suppliers are considering – and in some cases already installing – systems that eliminate any involvement of pool staff with the ordering, supply, delivery and application of CO2. The suppliers contract to handle all these element. There are also moves to consolidate all the CO2 on a sport and recreation site into one centralised system. This could provide a central CO2 supply for all pool pH reduction, with CO2 used in conditioning drinks in bars and where CO2 is used in a café for delivering soft drinks.

    產品留言
    標題
    聯系人
    聯系電話
    內容
    驗證碼
    點擊換一張
    注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發送信息!
    2.如有必要,請您留下您的詳細聯系方式!



    相關產品
    美國 PEERLESS offshore消防水泵 all model
    圣達因高速鋯泵 bb3
    Schmalenberger 機床冷卻泵 ZHT12 32-08/2
    Schmalenberger Pumpe ZHT 7 32-13
    江蘇弗里森流體工程技術有限公司    電話:銷售電話18921211009 銷售支持13093065160 產品查詢13771284315   傳真:051086023577
    地址:江陰市澄江中路5號東都大廈707室    郵編:214400    蘇ICP備09022593號-1
    主營產品:帕斯菲達潤滑油冷卻水泵PROCONBJC電極DOSATRON比例泵奧宗尼亞臭氧發生器臭氧發生器

    蘇公網安備 32028102000821號

    最新中文字幕a片三级片,亚洲美女网天堂网,欧美精品a片网站,欧日韩精品毛片在线